3,976 research outputs found

    Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets: three-dimensional effects

    Get PDF
    A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important insights into the coupling and excitation events of the various linear mode numbers.Comment: 10 (+7) pages, 6 figures, accepted for Phys. Plasmas 6, to appear 199

    Entanglement Detection in the Stabilizer Formalism

    Full text link
    We investigate how stabilizer theory can be used for constructing sufficient conditions for entanglement. First, we show how entanglement witnesses can be derived for a given state, provided some stabilizing operators of the state are known. These witnesses require only a small effort for an experimental implementation and are robust against noise. Second, we demonstrate that also nonlinear criteria based on uncertainty relations can be derived from stabilizing operators. These criteria can sometimes improve the witnesses by adding nonlinear correction terms. All our criteria detect states close to Greenberger-Horne-Zeilinger states, cluster and graph states. We show that similar ideas can be used to derive entanglement conditions for states which do not fit the stabilizer formalism, such as the three-qubit W state. We also discuss connections between the witnesses and some Bell inequalities.Comment: 15 pages including 2 figures, revtex4; typos corrected, presentation improved; to appear in PR

    Note on a Conjecture of Wegner

    Full text link
    The optimal packings of n unit discs in the plane are known for those natural numbers n, which satisfy certain number theoretic conditions. Their geometric realizations are the extremal Groemer packings (or Wegner packings). But an extremal Groemer packing of n unit discs does not exist for all natural numbers n and in this case, the number n is called exceptional. We are interested in number theoretic characterizations of the exceptional numbers. A counterexample is given to a conjecture of Wegner concerning such a characterization. We further give a characterization of the exceptional numbers, whose shape is closely related to that of Wegner's conjecture.Comment: 5 pages; Contributions to Algebra and Geometry, Vol.52 No1 April 201

    Block partitions: an extended view

    Get PDF
    Given a sequence S=(s1,,sm)[0,1]mS=(s_1,\dots,s_m) \in [0, 1]^m, a block BB of SS is a subsequence B=(si,si+1,,sj)B=(s_i,s_{i+1},\dots,s_j). The size bb of a block BB is the sum of its elements. It is proved in [1] that for each positive integer nn, there is a partition of SS into nn blocks B1,,BnB_1, \dots , B_n with bibj1|b_i - b_j| \le 1 for every i,ji, j. In this paper, we consider a generalization of the problem in higher dimensions

    Faceting and branching in 2D crystal growth

    Get PDF
    The official published version of the Article can be accessed from the link below - Copyright @ 2011 APSUsing atomic scale time-dependent density functional calculations we confirm that both diffusion-controlled and diffusionless crystallization modes exist in simple 2D systems. We provide theoretical evidence that a faceted to nonfaceted transition is coupled to these crystallization modes, and faceting is governed by the local supersaturation at the fluid-crystalline interface. We also show that competing modes of crystallization have a major influence on mesopattern formation. Irregularly branched and porous structures are emerging at the crossover of the crystallization modes. The proposed branching mechanism differs essentially from dendritic fingering driven by diffusive instability.This work has been supported by the EU FP7 Collaborative Project ENSEMBLE under Grant Agreement NMP4-SL-2008-213669 and by the Hungarian Academy of Sciences under Contract No. OTKA-K-62588

    F and D Values with Explicit Flavor Symmetry Breaking and \Delta s Contents of Nucleons

    Full text link
    We propose a new model for describing baryon semi-leptonic decays for estimating FF and DD values with explicit breaking effects of both SU(3) and SU(2) flavor symmetry, where all possible SU(3) and SU(2) breaking effects are induced from an effective interaction. An overall fit including the weak magnetism form factor yields F=0.477±0.001F=0.477\pm 0.001 and D=0.835±0.001D=0.835\pm 0.001 with χ2=4.43/5\chi^2=4.43/5 d.o.f. with Vud=0.975±0.002V_{ud}=0.975\pm 0.002 and Vus=0.221±0.002V_{us}=0.221\pm 0.002. The spin content of strange quarks Δs\Delta s is estimated from the obtained values FF and DD, and the nucleon spin problem is re-examined. Furthermore, the unmeasured values of (g1/f1)(g_1/f_1) and (g1)(g_1) for other hyperon semi-leptonic decays are predicted from this new formula.Comment: 15 pages, 1 figure, final version to appear in PR
    corecore